分子的导数((1+x)^x-1)'=[(1+x)^x]'
所以主要是求出[(1+x)^x]',利用对数恒等式
[(1+x)^x]'={e^[ln(1+x)^x]}'={e^[xln(1+x)]}'
复合函数求导{e^[xln(1+x)]}'={e^[xln(1+x)]}*[ln(1+x)+x/(1+x)]
此时分母求导为2x,仍为0比0型极限,因此再用罗毕达法则,即分子分母再次分别求导
分子{e^[xln(1+x)]}*[ln(1+x)+x/(1+x)]的导数为
={e^[xln(1+x)]}*[ln(1+x)+x/(1+x)]*[ln(1+x)+x/(1+x)]
+{e^[xln(1+x)]}*[1/(1+x)+1/(1+x)^2]
当x趋于0时,分子的极限为2,此时分母2x求导后也是2
所以极限为1