1、y=x²+bx+c与x轴交于点A(-1,0)、B(3,0)
∴对称轴为x=(-1+3)/2=1
即 -b/2=1,b=-2
把(3,0)代入y=x²-2x+c得:c=-3
∴y=x²-2x-3
2、∵AP与圆B相切
∴AP⊥BP
又∵DP垂直平分AB,即DP是△ABP斜边中线
∴DP=AB/2=2
∴P(1,2)或(1,-2)
3、根据对称性有PE=PF
设PE=PF=m,则EF=2m
∵P在x轴下方
∴0<EF<AB,即0<2m<4,即0<m<2
∵PE=PF=m,P点横坐标为1
∴E、F点横坐标分别为X(E)=1-m,X(F)=1+m
把X(E)=1-m,X(F)=1+m代入抛物线,求的E、F点纵坐标分别为:
Y(E)=(1-m)²-2(1-m)-3=m²-4,Y(F)=Y(E)=m²-4
∵0<m<2,∴m²<4,∴m-4²<0
∴ME=|m²-4| = 4-m²
∴C(MNFE) = 2MN+2EF
=2(4-m²)+4m
= -2m²+4m+8
= -2(m²-2m) + 8 配方:
= -2(m-1)² + 10
≤10
当m=1时,取最大值10
∵0<m<2,∴m=1满足条件
∴最大值为10