如果a-b=0,则a^4+a^3b+a^2b^2+ab^3+b^4/a^2b^2=
2个回答
规范的是a=b≠0
那么a^4+a^3b+a^2b^2+ab^3+b^4=5a^4,a^2b^2=a^4
所以(a^4+a^3b+a^2b^2+ab^3+b^4)/a^2b^2=5a^4/a^4=5
相关问题
若a-b=0则a^2*b^2分之a^4+3a^3b-2a^2b^2-4ab^3+b^4
设a>b>0,a^2 + 3b^2 - 4ab = 0,则(a+b)/(b-a) =
b=根号[(2a-b)/(4a+3b)]+根号[(b-2a)/(4a+3b)]+3/2 ,则a²-ab+b&s
如果4a^2+4ab+2b^2+2b+1=0,则a^b=
已知:a-b=0,求a^3-(2a^4b^3-a^2b)-ab^2-b^3+2a^3^b^4
{ab-[3a^2b-(4a^2b+1/2ab)]-4a^2b}+3a^2b}=
a-b-3=0,则2a²+4ab+2b²-6
如果2a+b=0,则|a/|b|-1|+||a|/b-2|等于().A,2B,3C,4D,
a^2-4b^2=0,(a^2-3ab+b^2)/(ab-a^2+b^2)=?
已知实数ab满足a^3-b^3=4,a^2+ab+b^2+a-b=4则a-b