分解因式:(1)(2x2-3x+1)2-22x2+33x-1;(2)x4+7x3+14x2+7x+1;(3)(x+y)3

1个回答

  • (1)(2x2-3x+1)2-22x2+33x-1,

    =(2x2-3x+1)2-11(2x2-3x+1)+10,

    =(2x2-3x+1-1)(2x2-3x+1-10),

    =(2x2-3x)(2x2-3x-9),

    =x(2x-3)(2x+3)(x-3);

    (2)x4+7x3+14x2+7x+1,

    =x4+4x3+6x2+4x+1+3x3+6x2+3x+2x2

    =[(x+1)2]2+3x(x+1)2+2x2

    =[(x+1)2+2x][(x+1)2+x],

    =(x2+4x+1)(x2+3x+1);

    (3)(x+y)3+2xy(1-x-y)-1

    =[(x+y)3-1]+2xy(1-x-y)

    =(x+y-1)[(x+y)2+x+y+1]-2xy(x+y-1)

    =(x+y-1)(x2+y2+x+y+1);

    (4)(x+3)(x2-1)(x+5)-20,

    =(x+3)(x+1)(x-1)(x+5)-20,

    =(x2+4x+3)(x2+4x-5)-20,

    =(x2+4x)2-2(x2+4x)-15-20,

    =(x2+4x+5)(x2+4x-7).