解题思路:(1)利用中位线定理可得∠BO1F=∠CO2F,进而可得∠DO1F=∠FO2E,易得O1F=AO2=O2E,O2F=AO1=O1D,可得:△DO1F≌△FO2E;
(2)易得△ACE和△ACQ,△ABD,△APD均为等腰直角三角形,那么可得AB,AC的长,利用勾股定理可得BC的长,利用顶点A及AB边构造和△PAQ全等的三角形AGB,利用勾股定理求得BG的长即为PQ的长;
(3)需证∠6+∠8=90°,那么证明∠5+∠7=90°即可;利用四点共圆的性质可得△DBR≌△DAM,进而可得∠5=∠9,即可求证.
(1)证明:如图一,
∵O1,O2,F分别是AB,AC,BC边的中点,
∴O1F∥AC且O1F=AO2,O2F∥AB且O2F=AO1,
∴∠BO1F=∠BAC,∠CO2F=∠BAC,
∴∠BO1F=∠CO2F
∵点D和点E分别为两个半圆圆弧的中点,
∴O1F=AO2=O2E,O2F=AO1=O1D,
∠BO1D=90°,∠CO2E=90°,
∴∠BO1D=∠CO2E.
∴∠DO1F=∠FO2E.
∴△DO1F≌△FO2E;
(2)如图二,延长CA至G,使AG=AQ,连接BG、AE.
∵点E是半圆O2圆弧的中点,
∴AE=CE=3
∵AC为直径
∴∠AEC=90°,
∴∠ACE=∠EAC=45°,AC=
AE2+CE2=3
2,
∵AQ是半圆O2的切线,
∴CA⊥AQ,
∴∠CAQ=90°,
∴∠ACE=∠AQE=45°,∠GAQ=90°,
∴AQ=AC=AG=3
2,
同理:∠BAP=90°,AB=AP=5
2,
∴CG=6
2,∠GAB=∠QAP,
∴△AQP≌△AGB.
∴PQ=BG,
∵∠ACB=90°,
∴BC=
AB2−AC2=4
点评:
本题考点: 切线的判定与性质;全等三角形的判定与性质;勾股定理.
考点点评: 综合考查了圆与全等的有关知识;利用中位线定理及构造三角形全等,利用全等的性质解决相关问题是解决本题的关键.