(1)因为函数 f(x)是定义在[-1,0]■(0,1] 上的偶函数
所以f(x)=f(-x)
当x∈[-1,0)时,f(x)=x3-ax(a∈R),则f(-x)=-x3+ax(a∈R)
则当x∈(0,1] 时,f(x)=-x3+ax(a∈R)
(2)f~(x)=-3x2+a,则当x∈(0,1] 时,-3x2的值域为[-3,0),因为a>3,所以f~(x)恒大于0,所以单调递增.
(3)自己做吧,我妈妈来了,下次有空在做完
(1)因为函数 f(x)是定义在[-1,0]■(0,1] 上的偶函数
所以f(x)=f(-x)
当x∈[-1,0)时,f(x)=x3-ax(a∈R),则f(-x)=-x3+ax(a∈R)
则当x∈(0,1] 时,f(x)=-x3+ax(a∈R)
(2)f~(x)=-3x2+a,则当x∈(0,1] 时,-3x2的值域为[-3,0),因为a>3,所以f~(x)恒大于0,所以单调递增.
(3)自己做吧,我妈妈来了,下次有空在做完