1)∫√[x*(2*x+3)^4]dx
=∫(x^(1/2)*(2x+3)^2)*2*dx^(1/2) (dx化为 2*x^(1/2)dx^(1/2))
=2∫(4x^3 +12*x^2 +9x)dx^(1/2)
=2∫4x^3 dx^(1/2)+2∫12*x^2 dx^(1/2)+2∫9x dx^(1/2)
=(8/7)*x^(7/2)+(24/5)*x^(5/2)+6*x^(3/2)
1)∫√[x*(2*x+3)^4]dx
=∫(x^(1/2)*(2x+3)^2)*2*dx^(1/2) (dx化为 2*x^(1/2)dx^(1/2))
=2∫(4x^3 +12*x^2 +9x)dx^(1/2)
=2∫4x^3 dx^(1/2)+2∫12*x^2 dx^(1/2)+2∫9x dx^(1/2)
=(8/7)*x^(7/2)+(24/5)*x^(5/2)+6*x^(3/2)