为什么(n+1)^k=n^k(1/n+1)^k
1个回答
(n+1)^k
=[n(1/n+1)]^k
=n^k(1/n+1)^k
相关问题
证明:(n+1)!/k!-n!/(k-1)!=(n-k+1)*n!/k!(k≤n)
数列与不等式求证:n<(k=1,n)∑√(1+(1/k²)+(1/(k+1)²))<n+1.(n∈N
设数列{1n}满足:当n=2k-2(k∈N*)时,1n=n;当n=2k(k∈N*)时,1n=1k;记
(1)已知k、n∈N * ,且k≤n,求证: k C kn =n C k-1n-1 ;
试证明 x/[n(n+k)]=(x/k)[1/n-1/(n+k)]
(Ⅰ)已知k∈N,n∈N*,且 k≤n,求证:[n+1/k+1]Ckn=Ck+1n+1;
lim(n→∞)∑(k=1,n)1/√n^2+k
∑(k=n,∞)(1-p)^(k-1)=(1-p)^(n-1)∑(k=0,∞)(1-p)^k
数列a[n+1]=k+(2k+1)a[n]+(k(k+1)a[n](a[n+1]))^1/2 已知a1=0 k属于N 求
n=1,略设n=k成立,k≥1即1+2+……+2k=k(2k+1)则n=k+11+2+……+2k+(2k+1)+(2k+