(1)如果要求小球做完整的圆周运动,那么任何位置,小球的速度都不能为零,速度最小点在圆周的最高点,此时的最小速度若设为V,那么此时圆周轨道对小球的作用力为0,只有重力作为维持小球作圆周运动的向心力,即 mg=mV^2/R V=√(Rg)
(2)若只要求小球不脱离圆周轨道,不要求做完整的圆周运动,小球在竖直光滑圆轨道内的圆周运动在到达R/2之前(包括R/2点)才有可能速度为0,以后速度都不可能为0.
(3)当小球过了R/2 点之后,不等其速度降到0,小球的速度降到不足以维持其作圆周运动时,就会脱离轨道,即脱离轨道时,小球有一个初速度,该初速度的方向接近脱离点的切线方向,但稍微向圆内一些,不会是水平,所以是斜抛.