f(x)=(x-1)*(x-3)*(x-4)*(x-6)+10
=[(x-1)(x-6)][(x-3)(x-4)]+10
=[(x^2-7x)+6][(x^2-7x)+12]+10
=(x^2-7x)^2+18(x^2-7x)+72+10
令t=x^2-7x
则(x-1)*(x-3)*(x-4)*(x-6)
=t^2+18t+82
=(t+9)^2+1>=1
因此命题得证
f(x)=(x-1)*(x-3)*(x-4)*(x-6)+10
=[(x-1)(x-6)][(x-3)(x-4)]+10
=[(x^2-7x)+6][(x^2-7x)+12]+10
=(x^2-7x)^2+18(x^2-7x)+72+10
令t=x^2-7x
则(x-1)*(x-3)*(x-4)*(x-6)
=t^2+18t+82
=(t+9)^2+1>=1
因此命题得证