已知sin(π/4+2a)*sin(π/4-2x)=1/4,a∈(π/4,π/2),求2sina^2+tana-1/(t

1个回答

  • sin(π/4+2a)=sinπ/4·cos√2a+cosπ/4·sin2a=√2/2(cos2a+sin2a)

    sin(π/4-2a)=sinπ/4·cos√2a-cosπ/4·sin2a=√2/2(cos2a-sin2a)

    ∴sin(π/4+2a)·sin(π/4-2x)

    =(1/2)(cos²2a-sin²2a)

    =1/2cos4a

    =1/4

    cos4a=1/2

    ∵a∈(π/4,π/2)

    ∴4a∈(π,2π)

    则4a=5π/3

    2a=5π/6

    sin2a=sin5π/6=1/2

    cos2a=cos5π/6=-√3/2

    cot2a=cos2a/sin2a=-√3

    那么2sin²a+tana-1/(tana)-1

    =-(1-2sin²a)+sina/cosa-cosa/sina

    =-cos2a+2(sin²a-cos²a)/(2sina·cosa)

    =-cos2a-2cos2a/sin2a

    =-cos2a-2cot2a

    =√3/2+2√3

    =5√3/2