是 y=(sinx)^2+[sin(x+π/3)]^2+[sin(x-π/3)]^2
由倍角公式得
y=[1-cos(2x)]/2+[1-cos(2x+2π/3)]/2+[1-cos(2x-2π/3)]/2
=3/2-1/2*[cos(2x)+cos(2x+2π/3)+cos(2x-2π/3)]
=3/2-1/2*[cos(2x)+2*cos(2x)cos(2π/3)]
=3/2-1/2*[cos(2x)+2*cos(2x)*(-1/2)]
=3/2 ,
y 为定值,因此 y 的最大值为 3/2 .