证明 设方程的两根为A1 A2 由题意可得
A1(3)+A2(3)=S1
A1(2)+A2(2)=S2
A1+A2=S3 (括号里的数表示几次方)
又因为A1 A2均为方程的根 所以两根适合方程即
aA1(2)+bA1+C=0
aA2(2)+bA2(2)+C=0
所以{ aA1(2)+bA1+C} A1 =0
{aA2(2)+bA2(2)+C} A2 =0
所以 aA1(3)+aA2(3)+bA1(2)+bA2(2)+CA1+CA2=aS1+bS2+CS3=0
证明 设方程的两根为A1 A2 由题意可得
A1(3)+A2(3)=S1
A1(2)+A2(2)=S2
A1+A2=S3 (括号里的数表示几次方)
又因为A1 A2均为方程的根 所以两根适合方程即
aA1(2)+bA1+C=0
aA2(2)+bA2(2)+C=0
所以{ aA1(2)+bA1+C} A1 =0
{aA2(2)+bA2(2)+C} A2 =0
所以 aA1(3)+aA2(3)+bA1(2)+bA2(2)+CA1+CA2=aS1+bS2+CS3=0