已知向量a=(cosωx,根号三cosωx),b=(sinωx,cosωx)(其中0

1个回答

  • 1

    向量a=(cosωx,根号三cosωx),b=(sinωx,cosωx)

    ∴f(x)=a●b-√3/2

    =sinwxcoswx+√3cos²wx-√3/2

    =1/2sin2wx+√3/2(1+cos2wx)-√3/2

    =1/2sin2wx+√3/2cos2wx

    =sin(2wx+π/3)

    ∵f(x+π)=f(x)

    ∴f(x)的周期为π

    ∴2π/(2w)=π ∴w=1

    ∴f(x)=sin(2x+π/3)

    2

    ∵x∈[-π/12,5π/12]

    ∴2x∈[-π/6,5π/6]

    ∴2x+π/3∈[π/6,7π/6]

    ∴当2x+π/3=7π/6时,f(x)min=-1/2

    当2x+π/3=π/2时,f(x)max=1

    ∴f(x)的值域为[-1/2,1]

    3

    3[f(x)]²+mf(x)-1=0

    在[-π/12,5π/12]上有三个不相等的实数根

    令t=f(x)=sin(2x+π/3)

    2x+π/3∈[π/6,π/2)U(π/2,5π/6]时,

    x与t的关系为2对1

    2x+π/3∈(5π/6,7π/6]U{π/2}时.

    x与t的关系为1对1

    则3t²+mt-1=0的实数根t1,t2满足:

    t1∈[-1/2,1/2)U{1} ,t2∈[1/2,1)

    当t1=1时,t2=-1/3不合题意

    t1∈[-1/2,1/2),t2∈[1/2,1)

    考察函数g(t)=3t²+mt-1

    则 {g(-1/2)=3/8-m/2-1≥0 ==>m≤-5/4

    {g(1/2)=3/8+m/2-1≤0 ==> m≤5/4

    {g(1)=2+t>0 ==>m>-2

    取交集得 -2