由A是正定矩阵,知对任意非零向量X都有 X'AX >0.
对任意 非零向量X2 (维数与A22的阶相同)
令 X = (O,X2) (O是全0的向量,维数与A11的阶相同)
则 X != 0.故 X'AX >0.
而此时 X2'A22X2 = X'AX (分块矩阵的乘法计算一下就得到了) >0
所以 A22 是正定矩阵.
由A是正定矩阵,知对任意非零向量X都有 X'AX >0.
对任意 非零向量X2 (维数与A22的阶相同)
令 X = (O,X2) (O是全0的向量,维数与A11的阶相同)
则 X != 0.故 X'AX >0.
而此时 X2'A22X2 = X'AX (分块矩阵的乘法计算一下就得到了) >0
所以 A22 是正定矩阵.