T(r+1)=C(n,r)*1^(n-r)*(-x)^r.
由题设知:r=2.
故,a=C(n,2)=n(n-1)/2=(n^2-n)/2.
lim[a/(bn^2+1)=1.
即,lim{[ (n^2-n)/2] /(bn^2+1)}=1.
lim(1-1/n)/(2b+1/n^2)=1.
当n--->∞时,得:1/2b=1.
故,b=1/2.
T(r+1)=C(n,r)*1^(n-r)*(-x)^r.
由题设知:r=2.
故,a=C(n,2)=n(n-1)/2=(n^2-n)/2.
lim[a/(bn^2+1)=1.
即,lim{[ (n^2-n)/2] /(bn^2+1)}=1.
lim(1-1/n)/(2b+1/n^2)=1.
当n--->∞时,得:1/2b=1.
故,b=1/2.