an=1+(n-1)*1=n;
bn=2*2^(n-1)=2^n;
an+bn=n+2^n;
则{an+bn}的前n项和Sn=(1+2+...+n)+(2^1+2^2+...2^n)=n*(1+n)/2+2(1-2^n)/(1-2)
=n/2+n^2/2-2+2^(n+1);
an=1+(n-1)*1=n;
bn=2*2^(n-1)=2^n;
an+bn=n+2^n;
则{an+bn}的前n项和Sn=(1+2+...+n)+(2^1+2^2+...2^n)=n*(1+n)/2+2(1-2^n)/(1-2)
=n/2+n^2/2-2+2^(n+1);