一元三次方程求根公式
卡尔丹公式 (卡尔达诺公式)
特殊型一元三次方程X^3+pX+q=0 (p、q∈R)
判别式Δ=(q/2)^2+(p/3)^3
标准型一元三次方程aX ^3+bX ^2+cX+d=0:
令X=Y—b/(3a)代入上式,
可化为适合卡尔丹公式直接求解的特殊型一元三次方程Y^3+pY+q=0.
【卡尔丹公式】
X1=(Y1)^(1/3)+(Y2)^(1/3);
X2= (Y1)^(1/3)ω+(Y2)^(1/3)ω^2;
X3=(Y1)^(1/3)ω^2+(Y2)^(1/3)ω,
其中ω=(-1+i3^(1/2))/2;
Y(1,2)=-(q/2)±((q/2)^2+(p/3)^3)^(1/2).
【卡尔丹判别法】
当Δ=(q/2)^2+(p/3)^3>0时,方程有一个实根和一对共轭虚根;
当Δ=(q/2)^2+(p/3)^3=0时,方程有三个实根,其中有一个两重根;
当Δ=(q/2)^2+(p/3)^3