【f(x1)+f(x2)】/2=(2^x1+2^x2)/2
f((x1+x2)/2)=2^((x1+x2)/2)=2^(x1/2)2^(x2/2)
【f(x1)+f(x2)】/2-f((x1+x2)/2)
==(2^x1+2^x2)/2-2^(x1/2)2^(x2/2)
=1/2[2^(x1/2)-2^(x2/2)]^2>=0
故【f(x1)+f(x2)】/2≥f((x1+x2)/2)
【f(x1)+f(x2)】/2=(2^x1+2^x2)/2
f((x1+x2)/2)=2^((x1+x2)/2)=2^(x1/2)2^(x2/2)
【f(x1)+f(x2)】/2-f((x1+x2)/2)
==(2^x1+2^x2)/2-2^(x1/2)2^(x2/2)
=1/2[2^(x1/2)-2^(x2/2)]^2>=0
故【f(x1)+f(x2)】/2≥f((x1+x2)/2)