如图13,三角形abc内接于⊙o点d在oc的延长线上,∠b<90°且sinB=1/2∠cad=30°.1:证ad是⊙o的

1个回答

  • 1.证明:连结AO并延长AO交圆O于点E,再连结CE.

    则 角ACE=90度(直径所对的圆周角是直角),

    因为 角B小于90度,且sinB=1/2,

    所以 角B=30度,

    所以 角E=角B=30度(同弧所对的圆周角相等),

    因为 角ACE=90度,

    所以 角EAC=60度,

    因为 角CAD=30度,

    所以 角EAD=角EAC+角CAD=60度+30度=90度,

    因为 EA是过圆心O的直径,

    所以 AD是O的切线.

    2.因为 OD垂直于AB,

    所以 弧AC=弧BC,AC=BC=5,

    因为 角B=30度,

    所以 角AOC=60度,

    因为 OA=OC,

    所以 三角形OAC是等边三角形,

    所以 OA=AC=5,

    因为 角OAD=90度,角AOC=60度,

    所以 角D=30度,

    所以 OD=2OA=10,

    AD=5根号3.