设u=x+y,则y=f(u)
利用复合函数求导法则,两边对x求导,并注意到y是x的函数:
y'=f'(u)(1+y')
解出:y'=f'(u)/1-f'(u)
两边再对x求导,并注意f'(u)仍是x的复合函数
y"={f"(u)(1+y')[1-f'(u)]+f'(u)f"(u)(1+y')}/[1-f'(u)]^2
=f"(u)(1+y')/[1-f'(u)]^2
=f"(u)/[1-f'(u)]^3
其中f'(u)、f"(u)分别是f(u)对u求一阶、二阶导数.
设u=x+y,则y=f(u)
利用复合函数求导法则,两边对x求导,并注意到y是x的函数:
y'=f'(u)(1+y')
解出:y'=f'(u)/1-f'(u)
两边再对x求导,并注意f'(u)仍是x的复合函数
y"={f"(u)(1+y')[1-f'(u)]+f'(u)f"(u)(1+y')}/[1-f'(u)]^2
=f"(u)(1+y')/[1-f'(u)]^2
=f"(u)/[1-f'(u)]^3
其中f'(u)、f"(u)分别是f(u)对u求一阶、二阶导数.