先证充分性:
当φ=kπ+π/2(k∈Z)
f(x)=sin(ωx+kπ+π/2)
=coswx=cos(-wx) 即证
再证必要性:
f(x)=f(-x)
sin(ωx+φ)=sin(-ωx+φ)
sin(ωx+φ)+sin(-ωx+φ)=0
2sinφcoswx=0
sinφ=0 所以φ=kπ+π/2(k∈Z)
即证
先证充分性:
当φ=kπ+π/2(k∈Z)
f(x)=sin(ωx+kπ+π/2)
=coswx=cos(-wx) 即证
再证必要性:
f(x)=f(-x)
sin(ωx+φ)=sin(-ωx+φ)
sin(ωx+φ)+sin(-ωx+φ)=0
2sinφcoswx=0
sinφ=0 所以φ=kπ+π/2(k∈Z)
即证