解题思路:(1)首先根据直线AC的解析式即可求出A、C两点坐标,也就求出了OA、OC的长度,而三角形OBD是等腰直角三角形OBD,接着利用勾股定理和等腰直角三角形即可求出B的坐标;
(2)由于等腰三角形OBD是轴对称图形,对称轴是l,因此得到点O与点C关于直线l对称,所以得到直线AC与直线l的交点即为所求的点P,把x=2代入y=-[1/2]x+2即可求出P的坐标;
(3)可以设满足条件的点Q的坐标为(m,
−
1
2
m+2),然后根据到两坐标轴距离相等可以列出方程,然后解方程即可求出m.
(1)∵直线AC的解析式为y=-[1/2]x+2,直线AC交x轴于点C,交y轴于点A,
∴A(0,2),C(4,0),
∴OC=4,
∵三角形OBD是等腰直角三角形,
∴B(2,2);
(2)∵等腰三角形OBD是轴对称图形,对称轴是l
∴点O与点C关于直线l对称,
∴直线AC与直线l的交点即为所求的点P,
把x=2代入y=-[1/2]x+2,得y=1,
∴点P的坐标为(2,1);
(3)设满足条件的点Q的坐标为(m,−
1
2m+2),
由题意得−
1
2m+2=m或−
1
2m+2=-m,
解得m=[4/3]或m=-4,
∴点Q的坐标为([4/3],[4/3])或(-4,4).
点评:
本题考点: 一次函数综合题.
考点点评: 本题综合考查了一次函数与几何知识的应用,题中运用等腰直角三角形的性质及直线上的点的坐标特点以及直角三角形等知识求出线段的长是解题的关键.