解题思路:因为AB∥CD,由此得到∠4=∠BAF,它们是同位角,由此得到根据两直线平行,同位角相等;
由∠4=∠BAF,∠3=∠4得到∠3=∠BAF的根据是等量代换;
由∠BAF=∠CAD和已知结论得到∠3=∠CAD的根据是等量代换;
由∠3=∠CAD得到AD∥BE的根据是内错角相等,两直线平行.
(每空1分)推理填空:
已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4.
求证:AD∥BE.
证明:∵AB∥CD(已知)
∴∠4=∠BAF(两直线平行,同位角相等)
∵∠3=∠4(已知)
∴∠3=∠BAF(等量代换)
∵∠1=∠2(已知)
∴∠1+∠CAF=∠2+∠CAF(等式的性质)
即∠BAF=∠CAD
∴∠3=∠CAD(等量代换)
∴AD∥BE(内错角相等,两直线平行).
故答案为:
∠BAF(两直线平行,同位角相等);
∠4(已知);
∠BAF(等量代换);
等量代换;
内错角相等,两直线平行;
点评:
本题考点: 平行线的判定与性质.
考点点评: 此题主要考查了平行线的性质与判定,解答此题的关键是注意平行线的性质和判定定理的综合运用.