对任意epsilon>0,存在正整数N = [1/epsilon]+1,使得对任意n>N,任意正整数p,有
|x(n+p)-x(n)| = 1/(n+1)!+1/(n+2)!+…+1/(n+p)!
< 1/(n+1)n+1/(n+2)(n+1)+…+1/(n+p)(n+p-1)
= 1/n-1/(n+p)
对任意epsilon>0,存在正整数N = [1/epsilon]+1,使得对任意n>N,任意正整数p,有
|x(n+p)-x(n)| = 1/(n+1)!+1/(n+2)!+…+1/(n+p)!
< 1/(n+1)n+1/(n+2)(n+1)+…+1/(n+p)(n+p-1)
= 1/n-1/(n+p)