∫(xcosx)^2dx的积分怎么做?

2个回答

  • ∫ x²cos²x dx

    =(1/2)∫ x²(1+cos2x) dx

    =(1/2)∫ x² dx + (1/2)∫ x²cos2x dx

    =(1/6)x³ + (1/4)∫ x² d(sin2x)

    分部积分

    =(1/6)x³ + (1/4)x²sin2x - (1/4)∫ 2xsin2x dx

    =(1/6)x³ + (1/4)x²sin2x + (1/4)∫ x d(cos2x)

    =(1/6)x³ + (1/4)x²sin2x + (1/4)xcos2x - (1/4)∫ cos2x dx

    =(1/6)x³ + (1/4)x²sin2x + (1/4)xcos2x - (1/8)sin2x + C

    若有不懂请追问,如果解决问题请点下面的“选为满意答案”.