1题 1/2+(1+2)/3+(1+2+3)/4+.+(1+2+3+.+39)/40
=1/2+2*(1+3)/(2*3)+3*(1+3)/(2*4)+...+39*(1+39)/(2*40)
=1/2+2/2+3/2+.+39/2
=39*(1+39)/(2*2)
=39*10=390 (利用求和公式S=(首数+尾数)*个数/2来计算)
2题:计算方法如1题.结果为=1/2+2/2+3/2+...+59/2
=59*(1+59)/(2*2)
=59*15=435
1题 1/2+(1+2)/3+(1+2+3)/4+.+(1+2+3+.+39)/40
=1/2+2*(1+3)/(2*3)+3*(1+3)/(2*4)+...+39*(1+39)/(2*40)
=1/2+2/2+3/2+.+39/2
=39*(1+39)/(2*2)
=39*10=390 (利用求和公式S=(首数+尾数)*个数/2来计算)
2题:计算方法如1题.结果为=1/2+2/2+3/2+...+59/2
=59*(1+59)/(2*2)
=59*15=435