f(x)=cos²x-sin²x+2sinxcosx=cos2x+sin2x=√2sin(π/4+2x)
(1)f(x)的最小正周期T=2π/2=π
(2)由 2kπ-π/2≤π/4+2x ≤2kπ+π/2得kπ-3π/8≤x ≤kπ+π/8
所以f(x)的单调增区间为:[kπ-3π/8,kπ+π/8]
同理:f(x)的单调减区间为:[kπ+π/8,kπ+5π/8] (k∈Z)
(3)当-π/4≤x ≤π/4时,有-π/4≤π/4+2x ≤3π/4
所以 -√2/2≤sin(π/4+2x) ≤1
即-1≤√2sin(π/4+2x) ≤√2
故,当-π/4≤x ≤π/4时,f(x)的值域为:[-1,√2]