记g(x)=x²,由柯西中值定理存在∃ξ∈(a,b),使f'(ξ)/g'(ξ)=[f(a)-f(b)]/[g(a)-g(b)]即f'(ξ)/2ξ=[f(a)-f(b)]/[a²-b²]化简一下就是要证明的了: 2ξ[f(a)-f(b)]=(b^2-a^2)f'(ξ)...
f(x)在[a,b]上连续,在(a,b)可导,试证明∃ξ∈(a,b)使得2ξ[f(a)-f(b)]=(b^2
1个回答
相关问题
-
设f(x)在[a,b]上连续,在(a,b)内可导,则在(a,b)内至少存在一点ξ,使得f(ξ)−f(a)b−ξ=f′(ξ
-
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0.求证:存在ξ∈(a,b)使得f'(ξ)+f'
-
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f′(x)≠0.试证存在ξ、η∈(a,b),使得f′(ξ)f′(
-
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,试证存在ξ、η∈(a,b),使得eξ-η[f
-
设f(x)在[a,b]上连续,且f(a)<a,f(b)>b,证明:至少存在一点ξ∈(a,b),使得f(ξ)=ξ.
-
定积分证明设f(x)在〔a,b〕上连续,证明必存在ξ∈(a,b)使得(ξ-b)f(ξ)+∮(a,ξ)f(x)dx=0
-
用拉格朗日定理证明f(b)-f(a)=ξf'(ξ)ln(b/a);其中f(x)在[a,b]连续可导,b>a,ξ∈(a,b
-
求证一道高数题f(x)在(a,b)上连续可导且f(a)=0,求证f(ξ)=(b-ξ)f'(ξ)/a
-
设f(x)在闭区间[a,b] 上连续,在开区间[a,b] 内可导,且f(a)=0 ,证明存在ξ∈(a,b) ,使得 f'
-
设f(x)可导,且f(a)=f(b) 证明存在ξ∈ (a,b) 使f(a)-f(ξ )=ξ f'(x)