解题思路:由三角形的内角和是180°,可求∠BAC=66°,因为AD为∠BAC的平分线,得∠BAD=33°;又由三角形的一个外角等于与它不相邻的两个内角的和,得∠ADC=∠BAD+∠B=71°;又已知AF为BC边上的高,所以∠DAF=90°-∠ADC=19°.
∵∠BAC+∠B+∠C=180°,
又∵∠B=38°,∠C=76°,
∴∠BAC=66°.
∵AD为∠BAC的平分线,
∴∠BAD=33°,
∴∠ADC=∠BAD+∠B=71°.
又∵AF为BC边上的高,
∴∠DAF=90°-∠ADC=19°.
点评:
本题考点: 三角形的外角性质;角平分线的定义;三角形内角和定理.
考点点评: 本题考查三角形外角的性质及三角形的内角和定理,求角的度数常常要用到“三角形的内角和是180°这一隐含的条件;解答的关键是沟通外角和内角的关系.