∵一元二次方程x2-2ax+a+6=0有两个实根;
∴△=4a²-4×(a+6)=4a²-4a-24≥0;
解得:a≤-2或a≥3;
∵α,β是关于x的一元二次方程x²-2ax+a+6=0的两个实根;
∴α+β=2a,α•β=a+6;
(α-1)²+(β-1)²=α²+1-2α+β²-2β+1=α²+β²-2(β+α)+2
=(α+β)²-2αβ-2(α+β)+2
=4a²-2×(a+6)-2×2a+2
=4a²-2a-10
=4(a-4分之3)²-4分之49 ;
∵a≤-2或a≥3;
∴(a-4分之3)²≥(4分之49)²;
∴4(a-4分之3)²-4分之49≥8;
则(α-1)²+(β-1)²的最小值为8.