3*(1+2+3+4+.n)-n =3*(1+n)*n/2-n =(3n^2+n)/2
1个回答
解由3*(1+2+3+4+.n)-n =3*(1+n)*n/2-n
=(3n+3n^2)/2-n
=(3n+3n^2)/2-2n/2
=(3n+3n^2-2n)/2
=(3n^2+n)/2
相关问题
1*2+2*3+3*4+...+n(n+1)=n(n+1)(n+2)/3
n阶行列式计算|1 2 3.n-1 n||2 1 3.n-1 n||2 3 1.n-1 n||.||2 3 4. 1 n
(n+1)(n+2)/1 +(n+2)(n+3)/1 +(n+3)(n+4)/1
1\n(n+1)+1\(n+1)(n+2)+1\(n+2)(n+3)+1\(n+3)(n+4)
一个数学数列求和1*n+2*(n-1)+3*(n-2)+4*(n-3)+...+(n-2)*3+(n-1)*2+n*1=
设n∈N+,且n>2,化简:3/(1!+2!+3!)+4/(2!+3!+4!)+...+(n+2)\n!+(n+1)!+
用数学归纳法证明:1/1*2*3+1/2*3*4+...+1/N(N+1)(N+2)=N(N+3)/4(N+1)(N+2
4/(1*2*3)+7/(2*3*4)+.+(3n+1)/[n(n+1)(n+2)]
化简1/2!+2/3!+3/4!+.+(n-1)/n!n∈n*,n≥2
an=√(1*2)+√(2*3)+√(3*4)……+√[n(n+1)],n=1.2 3 4 ……证明n(n+1)/2<a