解题思路:在剪短上端的绳子的瞬间,绳子上的拉力立即减为零,而弹簧的伸长量没有来得及发生改变,故弹力不变,再分别对A、B两个小球运用牛顿第二定律,即可求得加速度.
在剪断绳子之前,A处于平衡状态,所以弹簧的拉力等于A的重力沿斜面的分力相等.在剪断上端的绳子的瞬间,绳子上的拉力立即减为零,而弹簧的伸长量没有来得及发生改变,故弹力不变仍为A的重力沿斜面上的分力.故A球的加速度为零;
在剪断绳子之前,对B球进行受力分析,B受到重力、弹簧对它斜向下的拉力、支持力及绳子的拉力,在剪断上端的绳子的瞬间,绳子上的拉力立即减为零,对B球进行受力分析,则B受到到重力、弹簧的向下拉力、支持力.所以根据牛顿第二定律得:
aB=
m1gsin30°+m2gsin30°
m2=
m1+m2
2m2g
故选:D
点评:
本题考点: 牛顿第二定律.
考点点评: 该题要注意在剪断绳子的瞬间,绳子上的力立即减为0,而弹簧的弹力不发生改变,再结合牛顿第二定律解题,难度不大.