sinB=3/5,
cosC=cos[180°-(A+B)]
=-cos(A+B)
=-(cosAcosB-sinAsinB)
=-[(√2/2)*4/5-(√2/2)*3/5]
∴cosC=-√2/10,
2、根据正弦定理,AC/sinB=BC/sinA,
AC=6√2,
延长CD至M,使DM=CD,连结MB,MA,
四边形AMBC是平行四边形,
MB=AC=6√2,
根据余弦定理,
CM^2=MB^2+BC^2-2MB*BC*cos
sinB=3/5,
cosC=cos[180°-(A+B)]
=-cos(A+B)
=-(cosAcosB-sinAsinB)
=-[(√2/2)*4/5-(√2/2)*3/5]
∴cosC=-√2/10,
2、根据正弦定理,AC/sinB=BC/sinA,
AC=6√2,
延长CD至M,使DM=CD,连结MB,MA,
四边形AMBC是平行四边形,
MB=AC=6√2,
根据余弦定理,
CM^2=MB^2+BC^2-2MB*BC*cos