(1)a=0时,f(x)=x^2/lnx f'(x)=2(lnx-1)/(lnx)^2. 令f'(x)>0 => (e, +无穷)时单调递增,(0, e)时单调递减;
(2)f'(x)=(x-a)(2lnx-1+a/x)/(lnx)^2.令f'(x)=0 =>一根为a显然。又记g(x)=2lnx-1+a/x =>g'(x)=2/x-a/x^2=(2/x^2)*(x-a) 令g'(x)=0,知g(x)在a处取到极小值,g(a)=2lna
(1)a=0时,f(x)=x^2/lnx f'(x)=2(lnx-1)/(lnx)^2. 令f'(x)>0 => (e, +无穷)时单调递增,(0, e)时单调递减;
(2)f'(x)=(x-a)(2lnx-1+a/x)/(lnx)^2.令f'(x)=0 =>一根为a显然。又记g(x)=2lnx-1+a/x =>g'(x)=2/x-a/x^2=(2/x^2)*(x-a) 令g'(x)=0,知g(x)在a处取到极小值,g(a)=2lna