(1)∵CB∥OA,
∴∠BOA+∠B=180°,
∵∠BOA=80°,
∴∠FOC=∠AOC,OE平分∠BOF,
∴∠EOC=∠EOF+∠FOC=
∠BOF+
∠FOA=
(∠BOF+∠FOA)=
×80°=40°;
(2)不变.
∵CB∥OA,
∴∠OCB=∠COA,∠OFB=∠FOA,
∵∠FOC=∠AOC,
∴∠COA=
∠FOA,即∠OCB:∠OFB=1:2.
(3)在平行移动AC的过程中,存在∠OEB=∠OCA,且∠OCA=60°.
设∠OCA=α,∠AOC=x,
∵∠OEB=∠COE+∠OCB=40°+x,
∠ACO=80°﹣x,
∴α=80°﹣x,40°+x=α,
∴x=20°,α=60°.