六年级解比例计算题50道 六年级化简比计算题30道 O(∩_∩)O谢谢...

3个回答

  • 甲,乙两人骑自行车从A,B两地同时相向而行,经过三小时两人相遇,甲,乙相遇时所行的路程比是3:2,相遇时,甲比乙多行18千米,甲每小时行多少千米?

    3-2=1(份),也就是如果甲比乙多一份就是多走18千米了,那么甲走了3份.也就*3,就是18*3=54(千米)

    小明从家去图书馆,去时每小时行6千米,回来时每小时行9千米,来回共用3小时,小明来回共走了多少千米?

    甲出资金2400元,乙出资金4000元,合资经商得利润1700元,因甲特别劳累,先提取利润的十七分之一作酬劳,其余按本金比例分配.问甲、乙各得红利多少元(红利金额不包括酬劳金额)?

    小王骑摩托车往返A、B两地、平均速度是每小时48千米,如果他去时每小时行42千米,那么它返回时的平均速度是每小时多少千米?

    (1)妈妈有10块糖,平均分给哥哥和弟弟.每人可以得到几块糖?(每人可分到5块糖.)

    提问:妈妈是怎样分的?(平均分)

    (2)如果妈妈分给弟弟6块,分给哥哥4块,弟弟和哥哥糖数的比是多少?(弟弟和哥哥糖数的比是3∶2.)

    提问:这样分还是平均分吗?

    日常生活中,很多分配问题并不是平均分配,那么,你们想知道还可以按照什么分配吗?好,今天我们继续研究有关分配的问题.

    (二)学习新课

    1.讲解例2.

    例2 一个农场计划在100公顷的地里种大豆和玉米,播种面积的比是3∶2.两种作物各播种多少公顷?

    (1)这道题是一道分配问题的应用题,想一想:分谁?按照什么分?求的是什么?

    (2)分析思考:看到“播种大豆和玉米面积的比是3∶2”这句话你想到了哪些倍数关系?小组讨论.

    ④玉米的面积与播种总面积的比是2∶5,玉米面积是播种面积的

    各小组选代表汇报,教师提前把学生要汇报的内容制成活动投影片,逐步出现.

    (3)解答例2.

    ①试试看,用你学过的知识来解答例2,并在学习小组内说说你是怎样想的?

    ②说说你是怎样做的?

    方法a:3+2=5

    播种大豆的面积 100÷5×3=60(公顷)

    播种玉米的面积 100÷5×2=40(公顷)

    方法b:总面积平均分成的份数为

    3+2=5

    ③比较一下这几种方法中哪种方法更好一些?为什么?(第二种方法好,好想好算.)

    说说这种方法的思路?(播种大豆和玉米面积的比是3∶2,就是说,在100公顷的地里,大豆地占3份,玉米地占2份,一共是5份,也就

    (4)这道题做得对不对?如何进行检验?请你检验一下同组同学做得对不对?(可以把求得的大豆和玉米的总面积相加,看是不是等于播种的总面积.或者可以把求得的大豆和玉米写成比的形式,看化简后是不是等于3∶2.)

    2.练习:第62页中的“做一做”(1).

    六一班和六二班订《少年科学》的人数比是3∶4,两个班共订了49份.两个班各订了多少份?

    (1)弄懂题意.

    (2)提问:这道题分配的是什么?按照什么进行分配?(这道题分配的是49份报纸,按照3∶4的比例分给六一班和六二班.)

    (3)独立完成.组员之间互相检验.

    3.学习例3.

    例3 学校把栽280棵树的任务,按照六年级三个班的人数分配给各班.一班有47人,二班有45人,三班有48人.三个班各应栽树多少棵?

    (1)小组讨论:这道题分配的是什么?按照什么来分配?(分配的是280棵树,按照一班、二班、三班的人数的比来分配.)

    (2)提问:根据一班、二班、三班人数怎样算出各班栽的棵数占总棵数的几分之几?

    (3)请你在练习本上独立完成.

    ①三个班的总人数:

    47+45+48=140(人)

    ②一班应栽的棵数:

    ③二班应栽的棵数:

    ④三班应栽的棵数:

    答:一班、二班、三班分别栽树94棵、90棵、96棵.

    (4)同组同学互相检验.

    4.练习:第62页中的“做一做”(2).

    一种什锦糖是由奶糖、水果糖和酥糖按照3∶5∶2混合成的.要配制这样的水果糖500千克,需要奶糖、水果糖和酥糖各多少千克?

    (1)在练习本上独立完成.

    (2)同组同学互相检验.

    (三)课堂总结

    今天这节课我们学习了什么知识?(板书课题:按比例分配应用题)想想看这种应用题有什么特点?(已知总数量和部分量的比,求部分量是多少.)解答这种应用题怎样想?(把一个总数量按照一定的比来进行分配,就要先求出总份数,再看各部分量占总数量的几分之几,接着就可以求出各部分量.)

    回到准备题,问:平均分按几比几分配的?是不是按比例分配的应用题?指出平均分应用题是按比例分配的应用题的一种特殊情况.

    (四)巩固反馈

    1.填空练习:

    ①把35千克苹果平均分成7份,每份( )千克,2份( )千克,5份是( )千克.

    2.专业户王大伯共养鸡和鸭2100只.鸡和鸭只数的比是4∶3.王大伯各养了多少只鸡和鸭?

    第62页的“做一做”(3).

    一个三角形三条边的长度比是3∶5∶4,这个三角形的周长是36厘米.三条边的长度分别是多少厘米?

    与练习题2有什么区别?

    如果求它的最短边、最长边怎么求?

    判断练习:(正确举√,错误举×)

    一个长方形的周长是20分米,长与宽的比是3∶2,这个长方形的长和宽各是多少分米?

    1.小明从家去图书馆,去时每小时行6千米,回来时每小时行9千米,来回共用3小时,小明来回共走了多少千米?

    2.甲出资金2400元,乙出资金4000元,合资经商得利润1700元,因甲特别劳累,先提取利润的十七分之一作酬劳,其余按本金比例分配.问甲、乙各得红利多少元(红利金额不包括酬劳金额)?

    3.三人坐出租车回家,车费合理分摊.小王在全程1/3处下车,老李在全程3/4处下车,林林到终点后共付车费35元,设计三人车费分摊方案

    4.比和比例单元练习

    一、 填空.

    1.________又叫做两个数的比.比的基本性质是____________________.

    2.____________________叫做这幅图的比例尺.

    3.___________________叫做比例,把 × = × 该写成比例_______.

    4.50000000厘米=_________千米, 5千米=___________厘米.

    5.因为 = ,所以_____× ______= ______ ×______.

    6.分数值一定,分数的___________和___________成正比例.

    7.________________一定,平行四边形的底和面积成正比例.

    8.如果6a=5b,那么a:b=_____: ____, a:5=____:____.

    9.甲数乙数的比值是2 ,甲数与乙数的比是_______:______.

    10.π是圆的________与________的比的比值.

    11.将2、5、8再配上一个数组成比例,这个数可以是( ).

    12.3:4.5的比值是_________,化成最简单的整数比是__________.

    13.在一幅1:6000000地图上,量得两个城市之间的距离是5厘米,两城市之间的实际距离是_________千米.

    14.甲数的 和乙数的 相等,甲数和乙数的比是_________.如果甲数

    5.甲、两袋糖的重量是4:1,从甲袋中取出10千克放入乙袋,这时它们的比是7:5.求两袋之和.