解(1)设M(x1,y1),N(x2,y2),
则b2x12+a2y12=a2b2,b2x22+a2y22=a2b2,
两式相减得(Y1-Y2)/(X2-X1)=-6/5 ①,
由题得x1+x2=3c,y1+y2=-b,代入①
得2b2-5bc+2c2=0⇒2b=c或b=2c②;
∵M、N在直线L上,得6(x1+x2)-5(y1+y2)=56⇒18c+5b=56③;
由②③解得(b为整数):b=4,c=2,a2=20,
因此椭圆方程为:(X^2)/20+(Y^2)/16=1.
解(1)设M(x1,y1),N(x2,y2),
则b2x12+a2y12=a2b2,b2x22+a2y22=a2b2,
两式相减得(Y1-Y2)/(X2-X1)=-6/5 ①,
由题得x1+x2=3c,y1+y2=-b,代入①
得2b2-5bc+2c2=0⇒2b=c或b=2c②;
∵M、N在直线L上,得6(x1+x2)-5(y1+y2)=56⇒18c+5b=56③;
由②③解得(b为整数):b=4,c=2,a2=20,
因此椭圆方程为:(X^2)/20+(Y^2)/16=1.