由已知得:
an-a(n-1)=2b(n-1).①
a(n+1)-an=2bn.②
①+②,得:
a(n+1)-a(n-1)=2[bn+b(n-1)]=4a(n-1)
得a(n+1)=5a(n-1)
即a(n+2)=5an
所以数列{an}隔项成等比
又因为a1=b1=1,a2=a1+2b1=1+2=3
所以有:an=5^[(n-1)/2](n为奇数)
=3×5^[(n/2)-1](n为偶数)
由已知得:
an-a(n-1)=2b(n-1).①
a(n+1)-an=2bn.②
①+②,得:
a(n+1)-a(n-1)=2[bn+b(n-1)]=4a(n-1)
得a(n+1)=5a(n-1)
即a(n+2)=5an
所以数列{an}隔项成等比
又因为a1=b1=1,a2=a1+2b1=1+2=3
所以有:an=5^[(n-1)/2](n为奇数)
=3×5^[(n/2)-1](n为偶数)