如果f(x)在[0,1]连续,那么F(x)=f(x)-f(x+1/n)在哪里连续?答案是[0,1-1/n]…但是不知道为
1个回答
F(x)=f(x)-f(x+1/n)的定义域由
{x∈[0,1],
{x+1/n∈[0,1]确定,
即x∈[0,1-1/n].
所以答案是[0,1-1/n].
相关问题
若f(x)在[0,1]上连续,求F(x)=f(x)-f(x+1/n)的连续区间.
设f(x)在闭区间[0,1]上连续,f(0)=f(1),证明存在x0属于[0,n-1/n],使得 f(x0)=f(x0+
函数f(x)在【0,1】上连续可微,证明:lim n->无穷 n积分符号(0——1) x^n f(x)dx=f(1)
如果f在点0连续,且f(0)=0,f(x1+x2)小于等于f(x1)+f(x2).
设f(x)=x^(n)sin(1/x) (x不为0)且f(0)=0,要使f(x)在x=0处的导函数连续,则n取何值?
1.设f(x)在[0,1]上连续,且f(0)=f(1),证明:存在x0∈[0,1],使得f(x0)=f(x0)+1/4
f(x)在[0,1]上连续,证明:∫[0,1]f(x)dx∫[x,1]f(y)dy=1/2(∫[0,1]f(x)dx)的
f0(x)=xe^x,f1(x)=f0'(x),f2(x)=f1'(x),.,fn(x)=f'n-1(x)(n∈N^*)
设f(x)在[0,n](n≥2的正整数)连续,f(0)=f(n).则存在一点ζ∈[0,n-1],满足f(ζ)=f(ζ+1
连续 为使此函数在x=0处连续,f(0)应定义为何值?f(x)=(1+2X)^(1/x)