设P(x,y),则x^2/a^2+y^2/b^2=1(a>b>0)
F1(-c,0),F2(c,0)
PF1=(-c-x,-y),PF2(c-x,-y)
PF1●PF2
=x^2-c^2+y^2
当x^2+y^2=b^2时,PF1●PF2取得最小值b^2-c^2
∴2c^2≤b^2-c^2≤3c^2
即3c^2≤a^2-c^2≤4c^2
4c^2≤a^2≤5c^2
∴1/5≤e^2≤1/4
√5/5≤e≤1/2
设P(x,y),则x^2/a^2+y^2/b^2=1(a>b>0)
F1(-c,0),F2(c,0)
PF1=(-c-x,-y),PF2(c-x,-y)
PF1●PF2
=x^2-c^2+y^2
当x^2+y^2=b^2时,PF1●PF2取得最小值b^2-c^2
∴2c^2≤b^2-c^2≤3c^2
即3c^2≤a^2-c^2≤4c^2
4c^2≤a^2≤5c^2
∴1/5≤e^2≤1/4
√5/5≤e≤1/2