选③90° ④120°
根据余弦定理得:
设AC,BD的交点是O,∠ACO=m,正方形的边长是1
∵AO^2=AC^2+OC^2-2AC×OCcosm
∴cosm=(AC^2+OC^2-AO^2)/2(AC×OC)
∴cosm=[AC^2+(√2/2)^2-(√2/2)^2]/(AC√2)
=AC^2/(AC√2)
=AC/√2
∵0<AC<√2
∴0<AC/√2<1
∴0<cosm<1
∴0°<m<90°
选③90° ④120°
根据余弦定理得:
设AC,BD的交点是O,∠ACO=m,正方形的边长是1
∵AO^2=AC^2+OC^2-2AC×OCcosm
∴cosm=(AC^2+OC^2-AO^2)/2(AC×OC)
∴cosm=[AC^2+(√2/2)^2-(√2/2)^2]/(AC√2)
=AC^2/(AC√2)
=AC/√2
∵0<AC<√2
∴0<AC/√2<1
∴0<cosm<1
∴0°<m<90°