1、q=1
2、设q不等于1
则两边同除以q^5得1+q=2q^4
移位,(1-q^4)+(q-q^4)=0
(1-q^2)(1+q^2)+q(1-q^3)=0
(1-q)(1+q)(1+q^2)+q(1-q)(1+q^2+q)=0
(1-q)[(1+q)(1+q^2)+q(1+q^2+q)]=0
[(1+q)(1+q^2)+q(1+q^2+q)]=0
1、q=1
2、设q不等于1
则两边同除以q^5得1+q=2q^4
移位,(1-q^4)+(q-q^4)=0
(1-q^2)(1+q^2)+q(1-q^3)=0
(1-q)(1+q)(1+q^2)+q(1-q)(1+q^2+q)=0
(1-q)[(1+q)(1+q^2)+q(1+q^2+q)]=0
[(1+q)(1+q^2)+q(1+q^2+q)]=0