知道sin、cos、tan的角度如何求值,不用计算器

3个回答

  • 公式一:

    设α为任意角,终边相同的角的同一三角函数的值相等:

    sin(2kπ+α)=sinα

    cos(2kπ+α)=cosα

    tan(2kπ+α)=tanα

    cot(2kπ+α)=cotα

    公式二:

    设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

    sin(π+α)=-sinα

    cos(π+α)=-cosα

    tan(π+α)=tanα

    cot(π+α)=cotα

    公式三:

    任意角α与 -α的三角函数值之间的关系:

    sin(-α)=-sinα

    cos(-α)=cosα

    tan(-α)=-tanα

    cot(-α)=-cotα

    公式四:

    利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

    sin(π-α)=sinα

    cos(π-α)=-cosα

    tan(π-α)=-tanα

    cot(π-α)=-cotα

    公式五:

    利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

    sin(2π-α)=-sinα

    cos(2π-α)=cosα

    tan(2π-α)=-tanα

    cot(2π-α)=-cotα

    公式六:

    π/2±α及3π/2±α与α的三角函数值之间的关系:

    sin(π/2+α)=cosα

    cos(π/2+α)=-sinα

    tan(π/2+α)=-cotα

    cot(π/2+α)=-tanα

    sin(π/2-α)=cosα

    cos(π/2-α)=sinα

    tan(π/2-α)=cotα

    cot(π/2-α)=tanα

    sin(3π/2+α)=-cosα

    cos(3π/2+α)=sinα

    tan(3π/2+α)=-cotα

    cot(3π/2+α)=-tanα

    sin(3π/2-α)=-cosα

    cos(3π/2-α)=-sinα

    tan(3π/2-α)=cotα

    cot(3π/2-α)=tanα

    (以上k∈Z)

    sin0=0

    sinπ/6=0.5

    sinπ/4=二分之根号2

    sinπ/3=二分之根号3

    sinπ/2=1

    cos0=1

    cosπ/6=二分之根号3

    cosπ/4=二分之根号2

    cosπ/3=0.5

    cosπ/2=0

    tan0=0

    tanπ/6=三分之根号3

    tanπ/4=1

    tanπ/3=根号3

    tanπ/2无实义

    cot0 无实义

    cotπ/6=根号3

    cotπ/4=1

    cotπ/3=三分之根号3

    cotv/2=0

    再给你发一些辅助公式

    一)两角和差公式 (写的都要记)

    sin(A+B)=sinAcosB+cosAsinB

    sin(A-B)=sinAcosB-sinBcosA 

    cos(A+B)=cosAcosB-sinAsinB

    cos(A-B)=cosAcosB+sinAsinB

    tan(A+B)=(tanA+tanB)/(1-tanAtanB)

    tan(A-B)=(tanA-tanB)/(1+tanAtanB)

    二)用以上公式可推出下列二倍角公式

    tan2A=2tanA/[1-(tanA)^2]

    cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2

    (上面这个余弦的很重要)

    sin2A=2sinA*cosA

    三)半角的只需记住这个:

    tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)

    四)用二倍角中的余弦可推出降幂公式

    (sinA)^2=(1-cos2A)/2

    (cosA)^2=(1+cos2A)/2

    五)用以上降幂公式可推出以下常用的化简公式

    1-cosA=sin^(A/2)*2

    1-sinA=cos^(A/2)*2

    一)两角和差公式 (写的都要记)

    sin(A+B)=sinAcosB+cosAsinB

    sin(A-B)=sinAcosB-sinBcosA 

    cos(A+B)=cosAcosB-sinAsinB

    cos(A-B)=cosAcosB+sinAsinB

    tan(A+B)=(tanA+tanB)/(1-tanAtanB)

    tan(A-B)=(tanA-tanB)/(1+tanAtanB)

    二)用以上公式可推出下列二倍角公式

    tan2A=2tanA/[1-(tanA)^2]

    cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2

    (上面这个余弦的很重要)

    sin2A=2sinA*cosA

    三)半角的只需记住这个:

    tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)

    四)用二倍角中的余弦可推出降幂公式

    (sinA)^2=(1-cos2A)/2

    (cosA)^2=(1+cos2A)/2

    五)用以上降幂公式可推出以下常用的化简公式

    1-cosA=sin^(A/2)*2

    1-sinA=cos^(A/2)*2

    同角三角函数基本关系

    ⒈同角三角函数的基本关系式

    倒数关系:

    tanα ·cotα=1

    sinα ·cscα=1

    cosα ·secα=1

    商的关系:

    sinα/cosα=tanα=secα/cscα

    cosα/sinα=cotα=cscα/secα

    平方关系:

    sin^2(α)+cos^2(α)=1

    1+tan^2(α)=sec^2(α)

    1+cot^2(α)=csc^2(α)