定义域R
2y=e^x-e^-x
令e^x=t (t>0)
则原式变为 2y=t-1/t
t^2-2yt-1=0
求根公式:
t=(2y±√(4y^2+4))/2
=y±√(y^2+1)
因为 t>0
所以 t=y+√(y^2+1)
即 e^x=y+√(y^2+1)
x=ln[y+√(y^2+1)]
反函数 y=ln[x+√(x^2+1)]
求反函数的步骤:
(1)求定义域
(2)从原函数中解出x,
(3)x,y互换
定义域R
2y=e^x-e^-x
令e^x=t (t>0)
则原式变为 2y=t-1/t
t^2-2yt-1=0
求根公式:
t=(2y±√(4y^2+4))/2
=y±√(y^2+1)
因为 t>0
所以 t=y+√(y^2+1)
即 e^x=y+√(y^2+1)
x=ln[y+√(y^2+1)]
反函数 y=ln[x+√(x^2+1)]
求反函数的步骤:
(1)求定义域
(2)从原函数中解出x,
(3)x,y互换