令G(x)=f(x)-x.
第一问:G(1)=f(1)-10,根据零点定理,则在(0.5,1)内必有一点c满足G(c)=f(c)-c=0,故f(c)=c.
第二问:要证f'(t)-m[f(t)-t]=1,即证有一点t满足G(x)-mG(x)=0,利用辅助函数方法,设F(x)=exp(-mx)G(x),因为F(c)=F(0)=0,所以存在一点t在(0,c)使得F'(t)=-mexp(-mx)G(t)+exp(-mt)G’(t)=0,即得G'(t)=mG(t),问题得证
令G(x)=f(x)-x.
第一问:G(1)=f(1)-10,根据零点定理,则在(0.5,1)内必有一点c满足G(c)=f(c)-c=0,故f(c)=c.
第二问:要证f'(t)-m[f(t)-t]=1,即证有一点t满足G(x)-mG(x)=0,利用辅助函数方法,设F(x)=exp(-mx)G(x),因为F(c)=F(0)=0,所以存在一点t在(0,c)使得F'(t)=-mexp(-mx)G(t)+exp(-mt)G’(t)=0,即得G'(t)=mG(t),问题得证