(1)f(x)=√(3)cos²(wx)+sin(wx)cos(wx)+a
=√(3)[1+cos(2wx)]/2+sin(2wx)/2+a
=sin(π/3)cos(2wx)+cos(π/3)sin(2wx)+a+√(3)/2
=sin(π/3+2wx)+a+√(3)/2
π/3+2w*(π/6)=-3π/2,
w=-11/2.
f(x)=sin(π/3-11x)+a+√(3)/2
(2)-π/3
(1)f(x)=√(3)cos²(wx)+sin(wx)cos(wx)+a
=√(3)[1+cos(2wx)]/2+sin(2wx)/2+a
=sin(π/3)cos(2wx)+cos(π/3)sin(2wx)+a+√(3)/2
=sin(π/3+2wx)+a+√(3)/2
π/3+2w*(π/6)=-3π/2,
w=-11/2.
f(x)=sin(π/3-11x)+a+√(3)/2
(2)-π/3