(1)1/4 ; (x-1/2)^2=x^2-x+1/4
(2)正负2 ; (x-a/2)^2=x^2-ax+a^2/4 推出1=a^2/4 则a=正负2
(3)x=1,y=2 ; 方程左边=(x-1)^2+(y+2)^2=0 则(x-1)^2=0,(y+2)^2=0,所以x=1,y=2
(4)>=0 ; [(a^2+(2b)^2]^2=a^4+8a×a×b×b+16b^4,所以原式=a^4-8a×a×b×b+16b^4=[(a^2-(2b)^2]^2>=0
(4)4 ; (x^2+2)^2=x^4+4x^2+4