解题思路:(1)要求∠ABX+∠ACX的度数,只要求出∠ABC+∠CBX+∠ACB+∠BCX,利用三角形内角和定理得出∠ABC+∠ACB=180°-∠A=180°-40°=140°;根据三角形内角和定理,∠CBX+∠BCX=∠Y+∠Z=95°,∴∠ABX+∠ACX=∠ABC+∠CBX+∠ACB+∠BCX=140°+95°=235°;
(2)要求∠ABX+∠ACX的度数,只要求出∠ABC+∠ACB-(∠BCX+∠CBX)的度数.根据三角形内角和定理,∠CBX+∠BCX=∠Y+∠Z=95°;根据三角形内角和定理得,∠ABC+∠ACB=180°-∠A=140°,∴∠ABX+∠ACX=∠ABC+∠ACB-(∠BCX+∠CBX)=140°-95°=45°;
(3)不能.假设能将△XYZ摆放到某个位置时,使得BX、CX同时平分∠ABC和∠ACB.则∠CBX+∠BCX=∠ABX+∠ACX=95°,那么∠ABC+∠ACB=190°,与三角形内角和定理矛盾,所以不能.
(1)在△ABC中,∠A+∠ABC+∠ACB=180°,∠A=40°
∴∠ABC+∠ACB=180°-40°=140°
在△BCX中,∠X+∠BCX+∠CBX=180°
∴∠BCX+∠CBX=180°-∠X
在△XYZ中,∠X+∠Y+∠Z=180°
∴∠Y+∠Z=180°-∠X
∴∠CBX+∠BCX=∠Y+∠Z=95°
∴∠ABX+∠ACX=∠ABC+∠CBX+∠ACB+∠BCX=140°+95°=235°;
(2)∠ABX+∠ACX=45度.理由如下:
∵∠Y+∠Z=95°
∴∠X=180°-(∠Y+∠Z)=85°
∴∠ABX+∠ACX=180°-∠A-∠XBC-∠XCB
=180°-40°-(180°-85°)
=45°;
(3)不能.假设能将△XYZ摆放到某个位置时,使得BX、CX同时平分∠ABC和∠ACB.则∠CBX+∠BCX=∠ABX+∠ACX=95°,那么∠ABC+∠ACB=190°,与三角形内角和定理矛盾,所以不能.
点评:
本题考点: 三角形的外角性质;三角形内角和定理.
考点点评: 考查三角形内角和定理,外角性质.