(1)p点代入直线方程:(3-m)Sn+2m*an-m-3=0;:(3-m)S(n-1)+2m*a(n-1)-m-3=0.相减得(3+m)an=2m*a(n-1),an/a(n-1)=2m/(3+m),an为等比数列,a1=1,an=[2m/(3+m)]^(n-1);
(2)f(m)=2m/(3+m).bn=bn=3/2*f[b(n-1)]=3/2*[2b(n-1)/(3+b(n-1))]=3b(n-1)/(3+b(n-1)).1/bn=1/b(n-1)+1/3,所以,{1/bn}为等差数列,1/bn=1/b1+(n-1)d=1+(n-1)=n;
(3)cn=bn*b(n+2)=n*(n+2)=n^2+2n,Tn为数列cn的前n项和,Tn=n(n+1)(2n+1)/6+2*(1+n)n/2=n(n+1)(2n+7)/6,因为n属于N*,当n取1时Tn值最小,Tn(min)=3;则t